
Week 10 - Friday

 What did we talk about last time?
 Client-server model
 Socket communication

 JOptionPane class provides static methods for:
 Displaying a message
 Asking a question

 Although it is possible to create a JOptionPane object, you
almost never do

 Just call the static methods
 Which means typing a lot of JOptionPane.

 To display "This is a message." you could call the
following:

JOptionPane.showMessageDialog(null,
"This is a message.");

 Most JOptionPane methods have many
overloads

 If you want to put a title on the window, you can
pass it in as the third parameter

 But this overloaded method also requires an int
parameter that says what kind of message you
want

 To add the title "Window Title", you might
call the following method:

JOptionPane.showMessageDialog(null,
"This is a message.", "Window Title",
JOptionPane.PLAIN_MESSAGE);

 You can choose an icon associated with one of the following constants:
 ERROR_MESSAGE
 INFORMATION_MESSAGE
 WARNING_MESSAGE
 QUESTION_MESSAGE
 PLAIN_MESSAGE

JOptionPane.showMessageDialog(null,
"Danger, Will Robinson!", "Danger!",
JOptionPane.WARNING_MESSAGE);

 Hitting the X in the corner is the same as Cancel

int answer = JOptionPane.showConfirmDialog(null,
"Do you want to break it down funky style?");

if(answer == JOptionPane.YES_OPTION)
JOptionPane.showMessageDialog(null, "Dope!");

else
JOptionPane.showMessageDialog(null, "Weak!");

 Here's an example showing a dialog that allows a user to choose between
Wealth, Happiness, and Infinite Wishes

 Note that many parameters can be null: parent, icon, default option

String[] options = {"Wealth", "Happiness", "Infinite Wishes"};
int answer = JOptionPane.showOptionDialog(null,
"What do you wish for?", "Wish", JOptionPane.DEFAULT_OPTION,
JOptionPane.QUESTION_MESSAGE, null, options, null);

 This input dialog asks a pressing question

 As with other methods, there are overloaded versions that
allow for titles, icons, and other options

String answer =
JOptionPane.showInputDialog(null,
"Why does a mouse when it spins?");

 To create a JFrame, we will
usually call its constructor that
takes a String, giving it a
title

 Then, we have to make it
visible so that we can see it

JFrame frame = new JFrame("A Window");
frame.setVisible(true);

 Next, you'll notice that closing the window doesn't end the program
 The little red square on the Eclipse Console is still clickable, meaning that the

program is running
 By default, closing the window by clicking its X only hides the window
 By calling the setDefaultCloseOperation(), we can make it so

that the default operations is dispose (getting rid of the window)

 Many books suggest passing in JFrame.EXIT_ON_CLOSE, but you
should not!

 Doing so will kill the rest of your program like System.exit()

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.setVisible(true);

 To use a JFrame you must:
 Create a JFrame object
 Set its size (either directly or by putting widgets on it and then calling
pack())
 Set its default close operation to dispose
 Make it visible

 Now that we've got a window, we can put widgets on it!

 Widget is a generic term for a wide range of GUI controls
 Buttons
 Labels (allowing us to put text or images on a GUI)
 Text fields
 Text areas (like text fields but larger)
 Menus
 Checkboxes
 Radio buttons
 Lists
 Combo boxes
 Sliders

 A button you can click on is provided by the JButton class
 A JButton is usually created with text or an image
 You'll need to make JButtons with images for Project 2

 Just creating the JButton doesn't do anything
 You have to add it to a JFrame (or other container) to see it
 Right now, we're just creating the buttons
 Next week, we'll learn how to add actions to them

JButton button = new JButton("Push me!");

 Once you've created a JButton, you can
add it to a JFrame by calling the add()
method on the JFrame

 All GUI containers have an add() method
that allows us to add a widget to it

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
JButton button = new JButton("Push me!");
frame.add(button);
frame.setVisible(true);

 You can also make a JButton
with an image instead of text

 To do so, you create an
ImageIcon and pass that to
the constructor of the
JButton

 You'll need the path to an image

JButton bowieButton = new JButton(new ImageIcon("bowie.jpg"));
frame.add(bowieButton, BorderLayout.CENTER);

 A JLabel is like a button you
can't click

 Its constructors work just like
the JButton ones

 It allows you to display text or
an image

JLabel nameLabel = new JLabel("David Bowie");
JLabel bowieLabel = new JLabel(new ImageIcon("bowie.jpg"));
frame.add(nameLabel, BorderLayout.NORTH);
frame.add(bowieLabel, BorderLayout.CENTER);

 A JTextField allows a user to enter
a (short) amount of text

 Usually, you'll need a JLabel to tell
the person what they should enter

 The example is ugly because the
JLabel and the JTextField don't
fill the 500 x 400 JFrame

JLabel messageLabel = new JLabel("Enter the magic words:");
JTextField magicField = new JTextField();
frame.add(messageLabel, BorderLayout.NORTH);
frame.add(magicField, BorderLayout.SOUTH);

 A JTextField is for entering small
pieces of information
 Name
 Address
 Telephone number

 For larger texts, we can use a
JTextArea

JLabel storyLabel = new JLabel("Write a story:");
JTextArea storyArea = new JTextArea();
frame.add(storyLabel, BorderLayout.NORTH);
frame.add(storyArea, BorderLayout.CENTER);

 BorderLayout is the default layout for JFrame
 When you add widgets, you can specify the location as one

of five regions:
 BorderLayout.NORTH stretches the width of the container

on the top
 BorderLayout.SOUTH stretches the width of the container

on the bottom
 BorderLayout.EAST sits on the right of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.WEST sits on the left of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.CENTER sits in the middle of the container

and stretches to fill all available space
 If you don't specify where you're adding a widget, it adds to

CENTER
 If you add more than one widget to a region, the new one

replaces the old
 Unused regions disappear

 GridLayout allows you to create a
grid with a specific number of rows and
columns

 All the cells in the grid are the same
size

 As you add widgets, they fill each row

frame.setLayout(new GridLayout(4, 5));
for(int row = 0; row < 4; ++row)
for(int column = 0; column < 5; ++column)

frame.add(new JButton("" + (row * 5 + column + 1)));

 We have added JButtons to JFrames, but those buttons
don't do anything

 When clicked, a JButton fires an event
 We need to add an action listener to do something when that

event happens
 A CLI program runs through loops, calls methods, and makes

decisions until it runs out of stuff to do
 GUIs usually have this event-based programming model
 They sit there, waiting for events to cause methods to get

called

 What can listen for a JButton to click?
 Any object that implements ActionListener
 ActionListener is an interface like any other with a single

abstract method in it:

void actionPerformed(ActionEvent e);

 We need to write a class with such a method
 We will rarely need to worry about the ActionEvent object
 But it does have a getSource()method that will give us the
Object (often a JButton) that fired the event

 Now, we get to something tricky
 It's possible to create a class on the fly, right in the middle of other code
 Consider the following interface:

 We can create, in the middle of other code, a class that implements
NoiseMaker, like this:

public interface NoiseMaker {
String makeNoise();

}

NoiseMaker maker = new NoiseMaker() {
public String makeNoise() {

return "Yowza!";
}

};

 The reason we brought up anonymous inner classes is that we can
use this syntax to make an ActionListener object right when
we need it, for a button

 It's ugly, but it works

JButton button = new JButton("Push me!");
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
button.setText("Ouch!"); // arbitrary code

}
}); // ugly: parenthesis for end of method call

 Before Java 8, we only had two choices:
 Make a whole class that implements ActionListener and might have

to do different actions based on which button fired the event
 Make a separate anonymous inner class for every single button, each

doing the action for that button
 Java 8 adds something called lambdas which actually make

anonymous inner classes too, but the syntax is much nicer
 Java 8 style:

JButton button = new JButton("Push me!");
button.addActionListener(e -> button.setText("Ouch!"));

 An interface with only a single method in it (like ActionListener) is called a
functional interface

 Java 8 lets us instantiate functional interface by filling out the method:
(Type1 arg1, Type2 arg2, …) -> { /* method body */ }
 But if it's possible for the compiler to infer the argument types, they don't have

to be written
 If you only have a single argument, you don't need parentheses
 And if you only have a single line in your method body, you don't need braces
 Multi-line example:

JButton button = new JButton("Push me!");
button.addActionListener(e -> {

button.setText("Ouch!");
button.setEnabled(false);

});

To understand recursion, you must first understand recursion.

 Defining something in terms of itself
 To be useful, the definition must be

based on progressively simpler
definitions of the thing being defined

Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case

 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem

public static long factorial(int n)
{
if(n <= 1)

return 1;
else

return n*factorial(n – 1);
}

Base Case

Recursive
Case

 When we do recursion, we want to pass all the data in through
our method arguments

 We want to get all of our results back through return
statements

 Think of each recursive method call as a frozen moment in
time

 Thus, we usually don't want to assign variables
 Instead, variables change as they pass to the next method call

 Local variables for each method are stored on the stack
 When a method is called, a copy of that method is pushed

onto the stack
 When a method returns, that copy of the method pops off the

stack

main main

solve

Call

main

solve

factorial

Call

main

solve

Return

 Each copy of factorial has a value of n stored as a local
variable

 For 6! :

6*factorial(5)

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

1

x = factorial(6);
factorial(6)

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

720

120

24

6

2

1

 Similarly, exponentiation is repeated multiplication
 Thus, 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥 � 𝑥𝑥… � 𝑥𝑥

(𝑦𝑦 times)
 Base case (y = 0):
 𝑥𝑥0 = 1

 Recursive case (y > 0):
 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥𝑦𝑦−1

 There is a more efficient way to do this, but you'll have to take
COMP 2100 to talk about it

public static double power(double x, int y){

if(y == 0)
return 1.0;

else
return x * power(x, y - 1);

}

Base Case

Recursive
Case

 Recursion sometimes requires similar information that can be
passed along to each recursive call

 This information could be an index into a String or an array
 In graph or tree algorithms, it might be the parent node you

visited previously
 There are recursive methods with 10 or more parameters
 There's nothing wrong with that, provided that you actually

need them all

 What if we want to sum the values in an array called array?
 We need some extra information: current index
 Base case (index = length):
 Sum(from index onward):

0 (Nothing left to sum)
 Recursive case (index < length):
 Sum(from index onward):

array[index] + Sum(from index + 1 onward)

public static double sum(double array[], int index) {

if(index == array.length)
return 0.0;

else
return array[index] + sum(array, index + 1);

}

Base Case

Recursive
Case

 What if we want to reverse the contents of a string called s?
 We need some extra information: current index
 Base case (index = length):
 Reverse(from index onward):

"" (Nothing left to reverse)
 Recursive case (index < length):
 Reverse(from index onward):

s[length – index - 1] + Reverse(from index + 1 onward)

public static String reverse(String s, int index) {

if(index == s.length())
return "";

else
return s.charAt(s.length() – index – 1) +

reverse(s, index + 1);

}

Base Case

Recursive
Case

 All stacks (including the call stack) are first-in last-out (FILO)
structures

 In situations where we want to deal with things in backwards
order, we can use this natural reversing tendency

 For example, if we want to print out a String in reverse, we
can recurse through each character and print them as the
recursion returns

 Doesn't make sense yet?

 What if we want to print the contents of a string called s in
reverse?

 We need some extra information: current index
 Base case (index = length):
 ReversePrint(from index onward):

Print nothing
 Recursive case (index < length):
 ReversePrint(from index onward):

ReversePrint(from index + 1 onward)
Then print s [index]

public static void reversePrint(String s, int index)
{

if(index < s.length()) {
reversePrint(s, index + 1);
System.out.print(s.charAt(index));

}

}

(Empty)
Base Case

Recursive
Case

 We can even use this approach to reverse a string in a
different manner than we did before

 Base case (index = length):
 Backwards(from index onward):

"" (Nothing left to reverse)
 Recursive case (index < length):
 Backwards(from index onward):

Backwards(from index + 1 onward) + s[index]

public static String backwards(String s, int index) {

if(index == s.length())
return "";

else
return backwards(s, index + 1) + s.charAt(index);

}

Base Case

Recursive
Case

 Beautiful divide and conquer algorithm
 Base case: List has size 1
 You're done!

 Recursive case: List has size greater than 1
 Divide your list in half
 Recursively merge sort each half
 Merge the two halves back together in sorted order

public static void mergeSort(int [] array) {

if(array.length > 1) {
int[] a = new int[array.length/2];
int[] b = new int[array.length – a.length];
for(int i = 0; i < a.length; ++i) //copy first half

a[i] = array[i];
for(int i = 0; i < b.length; ++i) //copy second half

b[i] = array[i + a.length];
mergeSort(a); //sort first half
mergeSort(b); //sort second half
merge(a, b, array);

}
}

(Empty)
Base Case

Recursive
Case

 The code to merge two sorted subarrays into a third array
trips up a lot of people

 Use three indexes, one for each array
 Always copy the smaller value from the two subarrays
 The tricky part is that you might no longer have anything left

to copy from a subarray
 At that point, you must copy from the other subarray
 In other words, always check the validity of an index before

using it

public static void merge(int[] a, int[] b, int[] array) {
int aIndex = 0;
int bIndex = 0;
for(int i = 0; i < array.length; ++i) {

if(aIndex >= a.length)
array[i] = b[bIndex++];

else if(bIndex >= b.length)
array[i] = a[aIndex++];

else if(a[aIndex] <= b[bIndex])
array[i] = a[aIndex++];

else
array[i] = b[bIndex++];

}
}

 I prefer the merging given on the previous slide
 A single for loop that fills the array makes sense to me
 I'm not a huge fan of using the postincrement operator

(aIndex++), but this is what it's designed for:
 Getting a value and then incrementing it, all in a single line of code
 Otherwise, we'd need braces for the cases

 Note that you can combine the four seemingly repetitive
cases into three cases (but not two)

 Another way to do the merge is with three while loops,
given on the next slide

public static void merge(int[] a, int[] b, int[] array) {
int aIndex = 0;
int bIndex = 0;
int i = 0;
while(aIndex < a.length && bIndex < b.length) {

if(a[aIndex] <= b[bIndex])
array[i] = a[aIndex++];

else
array[i] = b[bIndex++];

++i;
}
while(aIndex < a.length) {

array[i] = a[aIndex++];
++i;

}
while(bIndex < b.length) {

array[i] = b[bIndex++];
++i;

}
}

 Given an N x N chess board, where N ≥ 4 it is possible to place
N queens on the board so that none of them are able to attack
each other in a given move

 Write a method that, given a value of N, will return the total
number of ways that the N queens can be placed

 We will use recursion to place queens on the board, one row at
a time

 To save typing, we will use a loop to place the queen at each
different column within the row and then recurse
 Egad! A loop inside recursion!
 It happens.

 If we have placed queens on all the rows, we return 1 (a
successful placement)

 We sum up all the successful placements that our recursive
children make

 Base case: (row = 8)
 You have placed queens on rows 0-7
 Return 1 (a successful placement)

 Recursive case: (row < 8)
 Keep a sum of the successful placements made by placing in future

rows, initially 0
 Try to place a queen on columns 0-7
▪ For each successful column placement, recursively try to place queens on the

next row and add those successful placements to your sum

 Return sum

 First, we're going to talk about text files
 All files are sequences of bytes stored in binary, but in text files,

those bytes form human-readable text like words and numbers
 Unlike files storing data in binary, working with text files is similar

to the command-line I/O we've been doing since before COMP
2000

 Examples of text files:
 Source code for most programming languages (.c, .java, .py files,

etc.)
 Plain text files (often with a .txt extension)
 Many configuration and log files

 Reading from a text file is straightforward
 We use Scanner, just like reading from the command line
 We just have to create a new File object that gives the file

path we want to read from

 This code will read from some file called input.txt, as if
someone were typing its contents into the command line

Scanner in = new Scanner(new File("input.txt"));

 Recall that we can read correctly formatted text with a Scanner using
the following methods
 nextInt() Reads an int value
 nextDouble() Reads a double value
 next() Reads a white-space delimited String
 nextLine() Reads a String up to the next newline (which can

cause problems if there's a newline left over from
previous reads)

 These methods are usually what you need to get the job done, but there
are also nextBoolean(), nextByte(), nextFloat(),
nextLong(), and nextShort() methods

 Note that all the integer reading methods have a second version that
takes a base so that you can read values in bases 2-36

 Writing to files uses a different sequence of steps
 If you want to write to a text file, you've got to create a
PrintWriter object, based on a FileOutputStream
object (which takes the file name as a parameter)

 Once you've got a PrintWriter, you can use it just like
System.out

PrintWriter out = new PrintWriter(new
FileOutputStream ("output.txt"));

 When making a Scanner from a File or making a
PrintWriter from a FileOutputStream can
potentially throw a FileNotFoundException

 Since it's a checked exception, you need a try-catch or a
throws

 This example opens a file called goodbye.txt, writes some
text, and then closes the file

 Note that we are not showing the try-catch or throws
PrintWriter out = new PrintWriter(new
FileOutputStream ("goodbye.txt"));

out.println("So long!");
out.println("Farewell!");
out.println("Auf Wiedersehen!");
out.println("Goodbye!");
out.close();

 You should always close files as soon as you're done reading
from them or writing to them

 If you don't close files you're writing to before your program
ends, output can be lost

 Keeping files open ties up system resources
 There's a maximum number of files one program can have

open at a time
 Since we always want to close files, it's smart to put the

closing in a finally block

 This example copies the text from input.txt to output.txt

Scanner in = null;
PrintWriter out = null;
try {
in = new Scanner(new File("input.txt"));
out = new PrintWriter(new FileOutputStream ("output.txt"));
while(in.hasNextLine())

out.println(in.nextLine());
}
catch(FileNotFoundException e) {

e.printStackTrace();
}
finally {
if(in != null) in.close();
if(out != null) out.close();

}

 Wouldn't it be easier to use all
human readable files?

 Binary files can be more efficient
 In binary, all int values are 4 bytes

 In text, they can take up a lot
more

 In text, you also need a space or
other separator to divide the
numbers

Integer
Bytes in text
representation

0 1

92 2

789 3

4551 4

10890999 8

204471262 9

-2000000000 11

 Because they have a representation that is more compact
(and more similar to how data is stored in your program),
most files are binary (non-human-readable) files

 Many media files start with metadata
 Format information
 Size

 Then, they have the actual data (RGB values, audio samples,
frames of video, etc.)

 Binary files include most common file formats: .jpg, .png,
.mp3, .avi, .pdf, .docx, .pptx, and on and on

 Reading from binary files uses a completely different set of
objects than reading from text files

 We create a DataInputStream from a FileInputStream
 The FileInputStream takes the name of the file path

 You can create a FileInputStream first on a separate line,
but there's no need to do so

DataInputStream in = new DataInputStream(new
FileInputStream("input.dat"));

 The following code assumes that a file contains starts with an int
value giving the number of double values that come after it

DataInputStream in = null;
try {

in = new DataInputStream(new FileInputStream("numbers.dat"));
int length = in.readInt();
double sum = 0.0;
for(int i = 0; i < length; ++i)

sum += in.readDouble();
System.out.println("Sum: " + sum);

}
catch(IOException e) {

System.out.println("File problems!");
}
finally {

try{ in.close(); } catch(Exception e){}
}

 The reading methods in DataInputStream can throw:
 EOFException if the end of the file was reached but you still try to

read something
 IOException if the stream was closed (or something else goes

wrong)
 Since EOFException and even
FileNotFoundException are both children of
IOException, it's possible (as we did on the previous slide)
to have a single catch block that handles an IOException

 As with text files, we closed our files in a finally block
 You might have noticed that there was a baby try-catch block inside of there

as well

 For whatever reason, closing a DataInputStream can throw an
IOException

 By having a try-catch that will catch anything, we deal with the
IOException as well as catching the NullPointerException that
happens if we try to close a null DataInputStream

 Is that a good idea?
 Eh…it's fine: We're just trying to close the file and not crash our program

finally {
try{ in.close(); } catch(Exception e){}

}

 Writing to binary files is very similar to reading from binary
files

 We create a DataOutputStream from a
FileOutputStream

 The FileOutputStream takes the name of the file path

 The writing methods are similar too

DataOutputStream out = new DataOutputStream(new
FileOutputStream("output.dat"));

 The following code assumes that a file starts with an int value
giving the number of double values that come after it

DataOutputStream out = null;
try {
out = new DataOutputStream(new FileOutputStream("numbers.dat"));
out.writeInt(100);
for(int i = 0; i < 100; ++i)

out.writeDouble(Math.random() * 1000);
}
catch(IOException e) {

System.out.println("File problems!");
}
finally {

try{ out.close(); } catch(Exception e){}
}

 File input and output need to match each other well,
especially for binary I/O

 If data values are out of order, you'll get garbage, and it'll be
hard to know why

 Once you write the file output code, you can easily copy and
paste it to write the input code
 Change every out to in
 Change every write to read (and move the method arguments to

save return values)
 The structures are parallel

 Serialization takes a reference to an object and dumps it into a
file

 It writes representations to primitive types pretty much the
same way that a DataOutputStream does

 And if there're objects inside of the object you're serializing, it
serializes them too

 And! Serialization makes a note of all the objects that are
getting serialized, so if it sees an object a second time, it just
writes down a serial number for it instead of the whole thing

 Serialization is one of the closest things to magic you'll see in
programming

 You only need to implement the Serializable interface
on your object
 And the Serializable interface has no methods!

 It's just a way of marking an object as reasonable to try to
dump into a file

 Most objects are reasonable to dump into a file!

 Here's a class we might want to be able to dump into a file

public class Troll implements Serializable {
private String name;
private int age;
private Object hatedThing; // All trolls hate something
public Troll(String name, int age, Object hatedThing) {

this.name = name;
this.age = age;
this.hatedThing = hatedThing;

}
public Object getHatedThing() {

return hatedThing;
}

}

 To write an object marked Serializable, you need to create an
ObjectOutputStream

 You create an ObjectOutputStream the same way that you create a
DataOutputStream, by passing in a FileOutputStream
 At this point, you might be wondering why all these objects take
FileOutputStream objects and can't take just take a File object or even a file
name

 In actuality, you can pass in any OutputStream object (of which
FileOutputStream is a child), like maybe one that sends the data across the
network instead of storing it into a file

 An ObjectOutputStream object has many methods, but the only one that
matters is writeObject()

 Pass your object to that method and it'll get written out in its totality, no fuss

 Here's some code that creates a couple of Troll objects and
then writes them to a file called trolls.dat

Troll tom = new Troll("Tom", 351, "Bilbo Baggins");
Troll bert = new Troll("Bert", 417, tom);
ObjectOutputStream out = null;
try {

out = new ObjectOutputStream(new FileOutputStream("trolls.dat"));
out.writeObject(tom);
out.writeObject(bert);

}
catch(IOException e) {

System.out.println("Serialization failed.");
}
finally { try{ out.close(); } catch(Exception e){} }

 To read objects that have been serialized to a file, you need to
create an ObjectInputStream

 You create an ObjectOutputStream the same way that
you create a DataInputStream, by passing in a
FileInputStream

 For each object serialized, you call the readObject()
method to restore it from the file

 Note that readObject() has a return type of Object, so
you'll need to cast your object if you want to store it in a
reference of its own type

 Here's some code that reads in the Troll objects we
serialized in the previous example

Troll tom = null;
Troll bert = null;
ObjectInputStream in = null;
try {

in = new ObjectInputStream(new FileInputStream("trolls.dat"));
tom = (Troll)in.readObject();
bert = (Troll)in.readObject();

}
catch(IOException e) {

System.out.println("Deserialization failed.");
}
finally { try{ in.close(); } catch(Exception e){} }

 The network of hardware and software systems that connects many of the
world's computers

 Typically, people say the Internet and capitalize the "I" because there is only one
 Until we meet aliens
 Or decide to break off from the rest of the world

 The World Wide Web is the part of the Internet that is concerned with
webpages

 The Internet also includes:
 FTP
 VOIP
 Bittorrent
 Multiplayer video games
 Much, much more…

 The Internet is a packet switched system
 Individual pieces of data (called packets) are sent on the

network
 Each packet knows where it is going
 A collection of packets going from point A to point B might not all

travel the same route
C

BA

D

12

 Computers on the Internet have addresses, not names
 Google.com is actually [74.125.67.100]
 Google.com is called a domain
 The Domain Name System or DNS turns the name into an

address

 Old-style IP addresses are in this form:
 74.125.67.100

 4 numbers between 0 and 255, separated by dots
 That's a total of 2564 = 4,294,967,296 addresses
 But there are 7 billion people on earth…

 IPv6 are the new IP addresses that are beginning to be used
by modern hardware
 8 groups of 4 hexadecimal digits each
 2001:0db8:85a3:0000:0000:8a2e:0370:7334

 1 hexadecimal digit has 16 possibilities
 How many different addresses is this?
 1632 = 2128 ≈ 3.4×1038 is enough to have 500 trillion addresses for

every cell of every person's body on Earth
 Will it be enough?!

 Not every layer is always used
 Sometimes user errors are referred to as Layer 8 problems
Layer Name Mnemonic Activity Example

7 Application Away User-level data HTTP

6 Presentation Pretzels Data appearance, some encryption Unicode

5 Session Salty Sessions, sequencing, recovery TLS

4 Transport Throw Flow control, end-to-end error detection TCP

3 Network Not Routing, blocking into packets IP

2 Data Link Dare
Data delivery, packets into frames,
transmission error recovery

Ethernet

1 Physical Programmers Physical communication, bit transmission Electrons in copper

 There is where the rubber meets the road
 The actual protocols for exchanging bits as electronic signals

happen at the physical layer
 At this level are things like RJ45 jacks and rules for

interpreting voltages sent over copper
 Or light pulses over fiber

 Ethernet is the most widely used example of the data layer
 Machines at this layer are identified by a 48-bit Media Access

Control (MAC) address
 The Address Resolution Protocol (ARP) can be used for one

machine to ask another for its MAC address
 Some routers allow a MAC address to be spoofed, but MAC

addresses are intended to be unique and unchanging for a
particular piece of hardware

 The most common network layer protocol is Internet Protocol
(IP)

 Each computer connected to the Internet should have a
unique IP address
 IPv4 is 32 bits written as four numbers from 0 – 255, separated by

dots
 IPv6 is 128 bits written as 8 groups of 4 hexadecimal digits

 We can use tracert on Windows to see the path of hosts
leading to some IP address

 There are two popular possibilities for the transport layer
 Transmission Control Protocol (TCP) provides reliability
 Sequence numbers for out of order packets
 Retransmission for packets that never arrive

 User Datagram Protocol (UDP) is simpler
 Packets can arrive out of order or never show up
 Many online games use UDP because speed is more important

 This layer doesn't necessarily exist in the TCP/IP model
 Transport Layer Security (TLS) uses the session layer
 TLS is the end-to-end encryption that HTTPS uses
 You know you're using TLS if there's a little lock showing on

your browser
 Google is pushing for all websites to be HTTPS
 HTTPS is safer, but there's some overhead for the encryption,

and websites have to have certificates for their public keys

 The presentation layer is often optional
 It specifies how the data should appear
 This layer is responsible for character encoding (ASCII, UTF-8,

etc.)
 MIME types are sometimes considered presentation layer

issues

 This is where the data is interpreted and used
 HTTP is an example of an application layer protocol
 A web browser takes the information delivered via HTTP and

renders it
 Code you write deals significantly with the application layer

 Seven layers is a lot to remember
 Mnemonics have been developed to help

Application All All A Away

Presentation Pros People Powered-Down Pretzels

Session Search Seem System Salty

Transport Top To Transmits Throw

Network Notch Need No Not

Data Link Donut Data Data Dare

Physical Places Processing Packets Programmers

 The OSI model is sort of a sham
 It was invented after the Internet was already in use
 You don't need all layers
 Some people think this categorization is not useful

 Most network communication uses TCP/IP
 We can view TCP/IP as four layers:

Layer Action Responsibilities Protocol

Application Prepare messages User interaction HTTP, FTP, etc.

Transport Convert messages to packets
Sequencing, reliability, error
correction

TCP or UDP

Internet Convert packets to datagrams Flow control, routing IP

Physical Transmit datagrams as bits Data communication

 A TCP/IP connection between two hosts (computers) is
defined by four things
 Source IP
 Source port
 Destination IP
 Destination port

 One machine can be connected to many other machines, but
the port numbers keep the different connections straight

 Certain kinds of network communication are usually done on
specific ports
 20 and 21: File Transfer Protocol (FTP)
 22: Secure Shell (SSH)
 23: Telnet
 25: Simple Mail Transfer Protocol (SMTP)
 53: Domain Name System (DNS) service
 80: Hypertext Transfer Protocol (HTTP)
 110: Post Office Protocol (POP3)
 443: HTTP Secure (HTTPS)

 Using sockets is usually associated with a client-server model
 A server is a process that sits around waiting for a connection
 When it gets one, it can do sends and receives

 A client is a process that connects to a waiting server
 Then it can do sends and receives

 Clients and servers are processes, not computers
 You can have many client and server processes on a single machine

 The server sits there, waiting for a client to connect
 Until that happens, the accept() method will not return
 When it does return, it will return with a socket that can be

used for communicating with the client

Server Client

Requesting connection…

 It's inconvenient to need two different computers to write
network code

 For testing purposes, you can often use a single computer as both
the server and the client

 To do so, you need to connect to yourself
 What's your IP address?
 Well, it might always be changing
 To make things simpler, there's a loopback IP address that always

refers to the computer you're currently on: 127.0.0.1
 The IPv6 loopback address is ::1 (where :: is notation that

means "fill in with appropriate numbers of zeroes")

 Exam 2 on Monday

 Work on Project 3
 Project 3 is now due on April 3

 Review everything after Exam 1
 Exam 2 is Monday, March 30

	COMP 2000
	Last time
	Questions?
	Project 3
	Review
	JOptionPane
	JOptionPane
	showMessageDialog() example
	Adding a title
	Different icons
	showConfirmDialog() example
	showOptionDialog() example
	showInputDialog() example
	JFrame
	Creating a JFrame
	setDefaultCloseOperation()
	Recap
	Widgets
	JButton
	Adding a JButton to a JFrame
	Displaying an icon on a JButton
	JLabel
	JTextField
	JTextArea
	BorderLayout
	GridLayout
	Action Listeners
	Making buttons do things
	ActionListener interface
	Anonymous inner classes
	Adding an action listener
	Java 8 style
	More on Java 8 style
	Recursion
	What is recursion?
	Useful Recursion
	Approach for Problems
	Code for Factorial
	Recursive style
	Call stack
	Example with Factorial
	Exponentiation
	Code for exponentiation
	Extra information
	Summing an array
	Code for summing an array
	Reversing a String
	Code for reversing a String
	Using the stack to go in reverse
	Printing a String in reverse
	Code for printing a String in reverse
	Reversing a String (the remix)
	Remixed code for reversing a String
	Merge Sort
	Merge Sort algorithm (recursive)
	Merge Sort code
	Merging (the hard part)
	Merge code
	Merging
	Merge code (alternative)
	N-Queens
	Problem solving approach
	N-Queens algorithm (recursive)
	Files
	Text files
	Reading
	Scanner methods
	Writing
	Exceptions
	Writing example
	Shut 'em down!
	Full example
	Why use binary files?
	Most files are binary files
	Reading binary files
	Example summing double values
	Error handling
	Closing the file
	Writing binary files
	Example writing double values
	Putting the I/O together
	Serialization
	Serializable interface
	Example Serializable class
	Writing using serialization
	Example of writing
	Reading using serialization
	Example of reading
	Networking
	What is the Internet?
	Packet switched
	IP addresses
	IPv4
	IPv6
	OSI 7 layer model
	Physical layer
	Data link layer
	Network layer
	Transport layer
	Session layer
	Presentation layer
	Application layer
	Mnemonics
	TCP/IP
	TCP/IP
	Common port numbers
	Clients vs. servers
	Listening server
	Loopback IP address
	Upcoming
	Next time…
	Reminders

