
Week 10 - Friday

 What did we talk about last time?
 Client-server model
 Socket communication

 JOptionPane class provides static methods for:
 Displaying a message
 Asking a question

 Although it is possible to create a JOptionPane object, you
almost never do

 Just call the static methods
 Which means typing a lot of JOptionPane.

 To display "This is a message." you could call the
following:

JOptionPane.showMessageDialog(null,
"This is a message.");

 Most JOptionPane methods have many
overloads

 If you want to put a title on the window, you can
pass it in as the third parameter

 But this overloaded method also requires an int
parameter that says what kind of message you
want

 To add the title "Window Title", you might
call the following method:

JOptionPane.showMessageDialog(null,
"This is a message.", "Window Title",
JOptionPane.PLAIN_MESSAGE);

 You can choose an icon associated with one of the following constants:
 ERROR_MESSAGE
 INFORMATION_MESSAGE
 WARNING_MESSAGE
 QUESTION_MESSAGE
 PLAIN_MESSAGE

JOptionPane.showMessageDialog(null,
"Danger, Will Robinson!", "Danger!",
JOptionPane.WARNING_MESSAGE);

 Hitting the X in the corner is the same as Cancel

int answer = JOptionPane.showConfirmDialog(null,
"Do you want to break it down funky style?");

if(answer == JOptionPane.YES_OPTION)
JOptionPane.showMessageDialog(null, "Dope!");

else
JOptionPane.showMessageDialog(null, "Weak!");

 Here's an example showing a dialog that allows a user to choose between
Wealth, Happiness, and Infinite Wishes

 Note that many parameters can be null: parent, icon, default option

String[] options = {"Wealth", "Happiness", "Infinite Wishes"};
int answer = JOptionPane.showOptionDialog(null,
"What do you wish for?", "Wish", JOptionPane.DEFAULT_OPTION,
JOptionPane.QUESTION_MESSAGE, null, options, null);

 This input dialog asks a pressing question

 As with other methods, there are overloaded versions that
allow for titles, icons, and other options

String answer =
JOptionPane.showInputDialog(null,
"Why does a mouse when it spins?");

 To create a JFrame, we will
usually call its constructor that
takes a String, giving it a
title

 Then, we have to make it
visible so that we can see it

JFrame frame = new JFrame("A Window");
frame.setVisible(true);

 Next, you'll notice that closing the window doesn't end the program
 The little red square on the Eclipse Console is still clickable, meaning that the

program is running
 By default, closing the window by clicking its X only hides the window
 By calling the setDefaultCloseOperation(), we can make it so

that the default operations is dispose (getting rid of the window)

 Many books suggest passing in JFrame.EXIT_ON_CLOSE, but you
should not!

 Doing so will kill the rest of your program like System.exit()

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
frame.setVisible(true);

 To use a JFrame you must:
 Create a JFrame object
 Set its size (either directly or by putting widgets on it and then calling
pack())
 Set its default close operation to dispose
 Make it visible

 Now that we've got a window, we can put widgets on it!

 Widget is a generic term for a wide range of GUI controls
 Buttons
 Labels (allowing us to put text or images on a GUI)
 Text fields
 Text areas (like text fields but larger)
 Menus
 Checkboxes
 Radio buttons
 Lists
 Combo boxes
 Sliders

 A button you can click on is provided by the JButton class
 A JButton is usually created with text or an image
 You'll need to make JButtons with images for Project 2

 Just creating the JButton doesn't do anything
 You have to add it to a JFrame (or other container) to see it
 Right now, we're just creating the buttons
 Next week, we'll learn how to add actions to them

JButton button = new JButton("Push me!");

 Once you've created a JButton, you can
add it to a JFrame by calling the add()
method on the JFrame

 All GUI containers have an add() method
that allows us to add a widget to it

JFrame frame = new JFrame("A Window");
frame.setSize(500, 400);
frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
JButton button = new JButton("Push me!");
frame.add(button);
frame.setVisible(true);

 You can also make a JButton
with an image instead of text

 To do so, you create an
ImageIcon and pass that to
the constructor of the
JButton

 You'll need the path to an image

JButton bowieButton = new JButton(new ImageIcon("bowie.jpg"));
frame.add(bowieButton, BorderLayout.CENTER);

 A JLabel is like a button you
can't click

 Its constructors work just like
the JButton ones

 It allows you to display text or
an image

JLabel nameLabel = new JLabel("David Bowie");
JLabel bowieLabel = new JLabel(new ImageIcon("bowie.jpg"));
frame.add(nameLabel, BorderLayout.NORTH);
frame.add(bowieLabel, BorderLayout.CENTER);

 A JTextField allows a user to enter
a (short) amount of text

 Usually, you'll need a JLabel to tell
the person what they should enter

 The example is ugly because the
JLabel and the JTextField don't
fill the 500 x 400 JFrame

JLabel messageLabel = new JLabel("Enter the magic words:");
JTextField magicField = new JTextField();
frame.add(messageLabel, BorderLayout.NORTH);
frame.add(magicField, BorderLayout.SOUTH);

 A JTextField is for entering small
pieces of information
 Name
 Address
 Telephone number

 For larger texts, we can use a
JTextArea

JLabel storyLabel = new JLabel("Write a story:");
JTextArea storyArea = new JTextArea();
frame.add(storyLabel, BorderLayout.NORTH);
frame.add(storyArea, BorderLayout.CENTER);

 BorderLayout is the default layout for JFrame
 When you add widgets, you can specify the location as one

of five regions:
 BorderLayout.NORTH stretches the width of the container

on the top
 BorderLayout.SOUTH stretches the width of the container

on the bottom
 BorderLayout.EAST sits on the right of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.WEST sits on the left of the container,

stretching to fill all the space between NORTH and SOUTH
 BorderLayout.CENTER sits in the middle of the container

and stretches to fill all available space
 If you don't specify where you're adding a widget, it adds to

CENTER
 If you add more than one widget to a region, the new one

replaces the old
 Unused regions disappear

 GridLayout allows you to create a
grid with a specific number of rows and
columns

 All the cells in the grid are the same
size

 As you add widgets, they fill each row

frame.setLayout(new GridLayout(4, 5));
for(int row = 0; row < 4; ++row)
for(int column = 0; column < 5; ++column)

frame.add(new JButton("" + (row * 5 + column + 1)));

 We have added JButtons to JFrames, but those buttons
don't do anything

 When clicked, a JButton fires an event
 We need to add an action listener to do something when that

event happens
 A CLI program runs through loops, calls methods, and makes

decisions until it runs out of stuff to do
 GUIs usually have this event-based programming model
 They sit there, waiting for events to cause methods to get

called

 What can listen for a JButton to click?
 Any object that implements ActionListener
 ActionListener is an interface like any other with a single

abstract method in it:

void actionPerformed(ActionEvent e);

 We need to write a class with such a method
 We will rarely need to worry about the ActionEvent object
 But it does have a getSource()method that will give us the
Object (often a JButton) that fired the event

 Now, we get to something tricky
 It's possible to create a class on the fly, right in the middle of other code
 Consider the following interface:

 We can create, in the middle of other code, a class that implements
NoiseMaker, like this:

public interface NoiseMaker {
String makeNoise();

}

NoiseMaker maker = new NoiseMaker() {
public String makeNoise() {

return "Yowza!";
}

};

 The reason we brought up anonymous inner classes is that we can
use this syntax to make an ActionListener object right when
we need it, for a button

 It's ugly, but it works

JButton button = new JButton("Push me!");
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
button.setText("Ouch!"); // arbitrary code

}
}); // ugly: parenthesis for end of method call

 Before Java 8, we only had two choices:
 Make a whole class that implements ActionListener and might have

to do different actions based on which button fired the event
 Make a separate anonymous inner class for every single button, each

doing the action for that button
 Java 8 adds something called lambdas which actually make

anonymous inner classes too, but the syntax is much nicer
 Java 8 style:

JButton button = new JButton("Push me!");
button.addActionListener(e -> button.setText("Ouch!"));

 An interface with only a single method in it (like ActionListener) is called a
functional interface

 Java 8 lets us instantiate functional interface by filling out the method:
(Type1 arg1, Type2 arg2, …) -> { /* method body */ }
 But if it's possible for the compiler to infer the argument types, they don't have

to be written
 If you only have a single argument, you don't need parentheses
 And if you only have a single line in your method body, you don't need braces
 Multi-line example:

JButton button = new JButton("Push me!");
button.addActionListener(e -> {

button.setText("Ouch!");
button.setEnabled(false);

});

To understand recursion, you must first understand recursion.

 Defining something in terms of itself
 To be useful, the definition must be

based on progressively simpler
definitions of the thing being defined

Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case

 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem

public static long factorial(int n)
{
if(n <= 1)

return 1;
else

return n*factorial(n – 1);
}

Base Case

Recursive
Case

 When we do recursion, we want to pass all the data in through
our method arguments

 We want to get all of our results back through return
statements

 Think of each recursive method call as a frozen moment in
time

 Thus, we usually don't want to assign variables
 Instead, variables change as they pass to the next method call

 Local variables for each method are stored on the stack
 When a method is called, a copy of that method is pushed

onto the stack
 When a method returns, that copy of the method pops off the

stack

main main

solve

Call

main

solve

factorial

Call

main

solve

Return

 Each copy of factorial has a value of n stored as a local
variable

 For 6! :

6*factorial(5)

5*factorial(4)

4*factorial(3)

3*factorial(2)

2*factorial(1)

1

x = factorial(6);
factorial(6)

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

720

120

24

6

2

1

 Similarly, exponentiation is repeated multiplication
 Thus, 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥 � 𝑥𝑥… � 𝑥𝑥

(𝑦𝑦 times)
 Base case (y = 0):
 𝑥𝑥0 = 1

 Recursive case (y > 0):
 𝑥𝑥𝑦𝑦 = 𝑥𝑥 � 𝑥𝑥𝑦𝑦−1

 There is a more efficient way to do this, but you'll have to take
COMP 2100 to talk about it

public static double power(double x, int y){

if(y == 0)
return 1.0;

else
return x * power(x, y - 1);

}

Base Case

Recursive
Case

 Recursion sometimes requires similar information that can be
passed along to each recursive call

 This information could be an index into a String or an array
 In graph or tree algorithms, it might be the parent node you

visited previously
 There are recursive methods with 10 or more parameters
 There's nothing wrong with that, provided that you actually

need them all

 What if we want to sum the values in an array called array?
 We need some extra information: current index
 Base case (index = length):
 Sum(from index onward):

0 (Nothing left to sum)
 Recursive case (index < length):
 Sum(from index onward):

array[index] + Sum(from index + 1 onward)

public static double sum(double array[], int index) {

if(index == array.length)
return 0.0;

else
return array[index] + sum(array, index + 1);

}

Base Case

Recursive
Case

 What if we want to reverse the contents of a string called s?
 We need some extra information: current index
 Base case (index = length):
 Reverse(from index onward):

"" (Nothing left to reverse)
 Recursive case (index < length):
 Reverse(from index onward):

s[length – index - 1] + Reverse(from index + 1 onward)

public static String reverse(String s, int index) {

if(index == s.length())
return "";

else
return s.charAt(s.length() – index – 1) +

reverse(s, index + 1);

}

Base Case

Recursive
Case

 All stacks (including the call stack) are first-in last-out (FILO)
structures

 In situations where we want to deal with things in backwards
order, we can use this natural reversing tendency

 For example, if we want to print out a String in reverse, we
can recurse through each character and print them as the
recursion returns

 Doesn't make sense yet?

 What if we want to print the contents of a string called s in
reverse?

 We need some extra information: current index
 Base case (index = length):
 ReversePrint(from index onward):

Print nothing
 Recursive case (index < length):
 ReversePrint(from index onward):

ReversePrint(from index + 1 onward)
Then print s [index]

public static void reversePrint(String s, int index)
{

if(index < s.length()) {
reversePrint(s, index + 1);
System.out.print(s.charAt(index));

}

}

(Empty)
Base Case

Recursive
Case

 We can even use this approach to reverse a string in a
different manner than we did before

 Base case (index = length):
 Backwards(from index onward):

"" (Nothing left to reverse)
 Recursive case (index < length):
 Backwards(from index onward):

Backwards(from index + 1 onward) + s[index]

public static String backwards(String s, int index) {

if(index == s.length())
return "";

else
return backwards(s, index + 1) + s.charAt(index);

}

Base Case

Recursive
Case

 Beautiful divide and conquer algorithm
 Base case: List has size 1
 You're done!

 Recursive case: List has size greater than 1
 Divide your list in half
 Recursively merge sort each half
 Merge the two halves back together in sorted order

public static void mergeSort(int [] array) {

if(array.length > 1) {
int[] a = new int[array.length/2];
int[] b = new int[array.length – a.length];
for(int i = 0; i < a.length; ++i) //copy first half

a[i] = array[i];
for(int i = 0; i < b.length; ++i) //copy second half

b[i] = array[i + a.length];
mergeSort(a); //sort first half
mergeSort(b); //sort second half
merge(a, b, array);

}
}

(Empty)
Base Case

Recursive
Case

 The code to merge two sorted subarrays into a third array
trips up a lot of people

 Use three indexes, one for each array
 Always copy the smaller value from the two subarrays
 The tricky part is that you might no longer have anything left

to copy from a subarray
 At that point, you must copy from the other subarray
 In other words, always check the validity of an index before

using it

public static void merge(int[] a, int[] b, int[] array) {
int aIndex = 0;
int bIndex = 0;
for(int i = 0; i < array.length; ++i) {

if(aIndex >= a.length)
array[i] = b[bIndex++];

else if(bIndex >= b.length)
array[i] = a[aIndex++];

else if(a[aIndex] <= b[bIndex])
array[i] = a[aIndex++];

else
array[i] = b[bIndex++];

}
}

 I prefer the merging given on the previous slide
 A single for loop that fills the array makes sense to me
 I'm not a huge fan of using the postincrement operator

(aIndex++), but this is what it's designed for:
 Getting a value and then incrementing it, all in a single line of code
 Otherwise, we'd need braces for the cases

 Note that you can combine the four seemingly repetitive
cases into three cases (but not two)

 Another way to do the merge is with three while loops,
given on the next slide

public static void merge(int[] a, int[] b, int[] array) {
int aIndex = 0;
int bIndex = 0;
int i = 0;
while(aIndex < a.length && bIndex < b.length) {

if(a[aIndex] <= b[bIndex])
array[i] = a[aIndex++];

else
array[i] = b[bIndex++];

++i;
}
while(aIndex < a.length) {

array[i] = a[aIndex++];
++i;

}
while(bIndex < b.length) {

array[i] = b[bIndex++];
++i;

}
}

 Given an N x N chess board, where N ≥ 4 it is possible to place
N queens on the board so that none of them are able to attack
each other in a given move

 Write a method that, given a value of N, will return the total
number of ways that the N queens can be placed

 We will use recursion to place queens on the board, one row at
a time

 To save typing, we will use a loop to place the queen at each
different column within the row and then recurse
 Egad! A loop inside recursion!
 It happens.

 If we have placed queens on all the rows, we return 1 (a
successful placement)

 We sum up all the successful placements that our recursive
children make

 Base case: (row = 8)
 You have placed queens on rows 0-7
 Return 1 (a successful placement)

 Recursive case: (row < 8)
 Keep a sum of the successful placements made by placing in future

rows, initially 0
 Try to place a queen on columns 0-7
▪ For each successful column placement, recursively try to place queens on the

next row and add those successful placements to your sum

 Return sum

 First, we're going to talk about text files
 All files are sequences of bytes stored in binary, but in text files,

those bytes form human-readable text like words and numbers
 Unlike files storing data in binary, working with text files is similar

to the command-line I/O we've been doing since before COMP
2000

 Examples of text files:
 Source code for most programming languages (.c, .java, .py files,

etc.)
 Plain text files (often with a .txt extension)
 Many configuration and log files

 Reading from a text file is straightforward
 We use Scanner, just like reading from the command line
 We just have to create a new File object that gives the file

path we want to read from

 This code will read from some file called input.txt, as if
someone were typing its contents into the command line

Scanner in = new Scanner(new File("input.txt"));

 Recall that we can read correctly formatted text with a Scanner using
the following methods
 nextInt() Reads an int value
 nextDouble() Reads a double value
 next() Reads a white-space delimited String
 nextLine() Reads a String up to the next newline (which can

cause problems if there's a newline left over from
previous reads)

 These methods are usually what you need to get the job done, but there
are also nextBoolean(), nextByte(), nextFloat(),
nextLong(), and nextShort() methods

 Note that all the integer reading methods have a second version that
takes a base so that you can read values in bases 2-36

 Writing to files uses a different sequence of steps
 If you want to write to a text file, you've got to create a
PrintWriter object, based on a FileOutputStream
object (which takes the file name as a parameter)

 Once you've got a PrintWriter, you can use it just like
System.out

PrintWriter out = new PrintWriter(new
FileOutputStream ("output.txt"));

 When making a Scanner from a File or making a
PrintWriter from a FileOutputStream can
potentially throw a FileNotFoundException

 Since it's a checked exception, you need a try-catch or a
throws

 This example opens a file called goodbye.txt, writes some
text, and then closes the file

 Note that we are not showing the try-catch or throws
PrintWriter out = new PrintWriter(new
FileOutputStream ("goodbye.txt"));

out.println("So long!");
out.println("Farewell!");
out.println("Auf Wiedersehen!");
out.println("Goodbye!");
out.close();

 You should always close files as soon as you're done reading
from them or writing to them

 If you don't close files you're writing to before your program
ends, output can be lost

 Keeping files open ties up system resources
 There's a maximum number of files one program can have

open at a time
 Since we always want to close files, it's smart to put the

closing in a finally block

 This example copies the text from input.txt to output.txt

Scanner in = null;
PrintWriter out = null;
try {
in = new Scanner(new File("input.txt"));
out = new PrintWriter(new FileOutputStream ("output.txt"));
while(in.hasNextLine())

out.println(in.nextLine());
}
catch(FileNotFoundException e) {

e.printStackTrace();
}
finally {
if(in != null) in.close();
if(out != null) out.close();

}

 Wouldn't it be easier to use all
human readable files?

 Binary files can be more efficient
 In binary, all int values are 4 bytes

 In text, they can take up a lot
more

 In text, you also need a space or
other separator to divide the
numbers

Integer
Bytes in text
representation

0 1

92 2

789 3

4551 4

10890999 8

204471262 9

-2000000000 11

 Because they have a representation that is more compact
(and more similar to how data is stored in your program),
most files are binary (non-human-readable) files

 Many media files start with metadata
 Format information
 Size

 Then, they have the actual data (RGB values, audio samples,
frames of video, etc.)

 Binary files include most common file formats: .jpg, .png,
.mp3, .avi, .pdf, .docx, .pptx, and on and on

 Reading from binary files uses a completely different set of
objects than reading from text files

 We create a DataInputStream from a FileInputStream
 The FileInputStream takes the name of the file path

 You can create a FileInputStream first on a separate line,
but there's no need to do so

DataInputStream in = new DataInputStream(new
FileInputStream("input.dat"));

 The following code assumes that a file contains starts with an int
value giving the number of double values that come after it

DataInputStream in = null;
try {

in = new DataInputStream(new FileInputStream("numbers.dat"));
int length = in.readInt();
double sum = 0.0;
for(int i = 0; i < length; ++i)

sum += in.readDouble();
System.out.println("Sum: " + sum);

}
catch(IOException e) {

System.out.println("File problems!");
}
finally {

try{ in.close(); } catch(Exception e){}
}

 The reading methods in DataInputStream can throw:
 EOFException if the end of the file was reached but you still try to

read something
 IOException if the stream was closed (or something else goes

wrong)
 Since EOFException and even
FileNotFoundException are both children of
IOException, it's possible (as we did on the previous slide)
to have a single catch block that handles an IOException

 As with text files, we closed our files in a finally block
 You might have noticed that there was a baby try-catch block inside of there

as well

 For whatever reason, closing a DataInputStream can throw an
IOException

 By having a try-catch that will catch anything, we deal with the
IOException as well as catching the NullPointerException that
happens if we try to close a null DataInputStream

 Is that a good idea?
 Eh…it's fine: We're just trying to close the file and not crash our program

finally {
try{ in.close(); } catch(Exception e){}

}

 Writing to binary files is very similar to reading from binary
files

 We create a DataOutputStream from a
FileOutputStream

 The FileOutputStream takes the name of the file path

 The writing methods are similar too

DataOutputStream out = new DataOutputStream(new
FileOutputStream("output.dat"));

 The following code assumes that a file starts with an int value
giving the number of double values that come after it

DataOutputStream out = null;
try {
out = new DataOutputStream(new FileOutputStream("numbers.dat"));
out.writeInt(100);
for(int i = 0; i < 100; ++i)

out.writeDouble(Math.random() * 1000);
}
catch(IOException e) {

System.out.println("File problems!");
}
finally {

try{ out.close(); } catch(Exception e){}
}

 File input and output need to match each other well,
especially for binary I/O

 If data values are out of order, you'll get garbage, and it'll be
hard to know why

 Once you write the file output code, you can easily copy and
paste it to write the input code
 Change every out to in
 Change every write to read (and move the method arguments to

save return values)
 The structures are parallel

 Serialization takes a reference to an object and dumps it into a
file

 It writes representations to primitive types pretty much the
same way that a DataOutputStream does

 And if there're objects inside of the object you're serializing, it
serializes them too

 And! Serialization makes a note of all the objects that are
getting serialized, so if it sees an object a second time, it just
writes down a serial number for it instead of the whole thing

 Serialization is one of the closest things to magic you'll see in
programming

 You only need to implement the Serializable interface
on your object
 And the Serializable interface has no methods!

 It's just a way of marking an object as reasonable to try to
dump into a file

 Most objects are reasonable to dump into a file!

 Here's a class we might want to be able to dump into a file

public class Troll implements Serializable {
private String name;
private int age;
private Object hatedThing; // All trolls hate something
public Troll(String name, int age, Object hatedThing) {

this.name = name;
this.age = age;
this.hatedThing = hatedThing;

}
public Object getHatedThing() {

return hatedThing;
}

}

 To write an object marked Serializable, you need to create an
ObjectOutputStream

 You create an ObjectOutputStream the same way that you create a
DataOutputStream, by passing in a FileOutputStream
 At this point, you might be wondering why all these objects take
FileOutputStream objects and can't take just take a File object or even a file
name

 In actuality, you can pass in any OutputStream object (of which
FileOutputStream is a child), like maybe one that sends the data across the
network instead of storing it into a file

 An ObjectOutputStream object has many methods, but the only one that
matters is writeObject()

 Pass your object to that method and it'll get written out in its totality, no fuss

 Here's some code that creates a couple of Troll objects and
then writes them to a file called trolls.dat

Troll tom = new Troll("Tom", 351, "Bilbo Baggins");
Troll bert = new Troll("Bert", 417, tom);
ObjectOutputStream out = null;
try {

out = new ObjectOutputStream(new FileOutputStream("trolls.dat"));
out.writeObject(tom);
out.writeObject(bert);

}
catch(IOException e) {

System.out.println("Serialization failed.");
}
finally { try{ out.close(); } catch(Exception e){} }

 To read objects that have been serialized to a file, you need to
create an ObjectInputStream

 You create an ObjectOutputStream the same way that
you create a DataInputStream, by passing in a
FileInputStream

 For each object serialized, you call the readObject()
method to restore it from the file

 Note that readObject() has a return type of Object, so
you'll need to cast your object if you want to store it in a
reference of its own type

 Here's some code that reads in the Troll objects we
serialized in the previous example

Troll tom = null;
Troll bert = null;
ObjectInputStream in = null;
try {

in = new ObjectInputStream(new FileInputStream("trolls.dat"));
tom = (Troll)in.readObject();
bert = (Troll)in.readObject();

}
catch(IOException e) {

System.out.println("Deserialization failed.");
}
finally { try{ in.close(); } catch(Exception e){} }

 The network of hardware and software systems that connects many of the
world's computers

 Typically, people say the Internet and capitalize the "I" because there is only one
 Until we meet aliens
 Or decide to break off from the rest of the world

 The World Wide Web is the part of the Internet that is concerned with
webpages

 The Internet also includes:
 FTP
 VOIP
 Bittorrent
 Multiplayer video games
 Much, much more…

 The Internet is a packet switched system
 Individual pieces of data (called packets) are sent on the

network
 Each packet knows where it is going
 A collection of packets going from point A to point B might not all

travel the same route
C

BA

D

12

 Computers on the Internet have addresses, not names
 Google.com is actually [74.125.67.100]
 Google.com is called a domain
 The Domain Name System or DNS turns the name into an

address

 Old-style IP addresses are in this form:
 74.125.67.100

 4 numbers between 0 and 255, separated by dots
 That's a total of 2564 = 4,294,967,296 addresses
 But there are 7 billion people on earth…

 IPv6 are the new IP addresses that are beginning to be used
by modern hardware
 8 groups of 4 hexadecimal digits each
 2001:0db8:85a3:0000:0000:8a2e:0370:7334

 1 hexadecimal digit has 16 possibilities
 How many different addresses is this?
 1632 = 2128 ≈ 3.4×1038 is enough to have 500 trillion addresses for

every cell of every person's body on Earth
 Will it be enough?!

 Not every layer is always used
 Sometimes user errors are referred to as Layer 8 problems
Layer Name Mnemonic Activity Example

7 Application Away User-level data HTTP

6 Presentation Pretzels Data appearance, some encryption Unicode

5 Session Salty Sessions, sequencing, recovery TLS

4 Transport Throw Flow control, end-to-end error detection TCP

3 Network Not Routing, blocking into packets IP

2 Data Link Dare
Data delivery, packets into frames,
transmission error recovery

Ethernet

1 Physical Programmers Physical communication, bit transmission Electrons in copper

 There is where the rubber meets the road
 The actual protocols for exchanging bits as electronic signals

happen at the physical layer
 At this level are things like RJ45 jacks and rules for

interpreting voltages sent over copper
 Or light pulses over fiber

 Ethernet is the most widely used example of the data layer
 Machines at this layer are identified by a 48-bit Media Access

Control (MAC) address
 The Address Resolution Protocol (ARP) can be used for one

machine to ask another for its MAC address
 Some routers allow a MAC address to be spoofed, but MAC

addresses are intended to be unique and unchanging for a
particular piece of hardware

 The most common network layer protocol is Internet Protocol
(IP)

 Each computer connected to the Internet should have a
unique IP address
 IPv4 is 32 bits written as four numbers from 0 – 255, separated by

dots
 IPv6 is 128 bits written as 8 groups of 4 hexadecimal digits

 We can use tracert on Windows to see the path of hosts
leading to some IP address

 There are two popular possibilities for the transport layer
 Transmission Control Protocol (TCP) provides reliability
 Sequence numbers for out of order packets
 Retransmission for packets that never arrive

 User Datagram Protocol (UDP) is simpler
 Packets can arrive out of order or never show up
 Many online games use UDP because speed is more important

 This layer doesn't necessarily exist in the TCP/IP model
 Transport Layer Security (TLS) uses the session layer
 TLS is the end-to-end encryption that HTTPS uses
 You know you're using TLS if there's a little lock showing on

your browser
 Google is pushing for all websites to be HTTPS
 HTTPS is safer, but there's some overhead for the encryption,

and websites have to have certificates for their public keys

 The presentation layer is often optional
 It specifies how the data should appear
 This layer is responsible for character encoding (ASCII, UTF-8,

etc.)
 MIME types are sometimes considered presentation layer

issues

 This is where the data is interpreted and used
 HTTP is an example of an application layer protocol
 A web browser takes the information delivered via HTTP and

renders it
 Code you write deals significantly with the application layer

 Seven layers is a lot to remember
 Mnemonics have been developed to help

Application All All A Away

Presentation Pros People Powered-Down Pretzels

Session Search Seem System Salty

Transport Top To Transmits Throw

Network Notch Need No Not

Data Link Donut Data Data Dare

Physical Places Processing Packets Programmers

 The OSI model is sort of a sham
 It was invented after the Internet was already in use
 You don't need all layers
 Some people think this categorization is not useful

 Most network communication uses TCP/IP
 We can view TCP/IP as four layers:

Layer Action Responsibilities Protocol

Application Prepare messages User interaction HTTP, FTP, etc.

Transport Convert messages to packets
Sequencing, reliability, error
correction

TCP or UDP

Internet Convert packets to datagrams Flow control, routing IP

Physical Transmit datagrams as bits Data communication

 A TCP/IP connection between two hosts (computers) is
defined by four things
 Source IP
 Source port
 Destination IP
 Destination port

 One machine can be connected to many other machines, but
the port numbers keep the different connections straight

 Certain kinds of network communication are usually done on
specific ports
 20 and 21: File Transfer Protocol (FTP)
 22: Secure Shell (SSH)
 23: Telnet
 25: Simple Mail Transfer Protocol (SMTP)
 53: Domain Name System (DNS) service
 80: Hypertext Transfer Protocol (HTTP)
 110: Post Office Protocol (POP3)
 443: HTTP Secure (HTTPS)

 Using sockets is usually associated with a client-server model
 A server is a process that sits around waiting for a connection
 When it gets one, it can do sends and receives

 A client is a process that connects to a waiting server
 Then it can do sends and receives

 Clients and servers are processes, not computers
 You can have many client and server processes on a single machine

 The server sits there, waiting for a client to connect
 Until that happens, the accept() method will not return
 When it does return, it will return with a socket that can be

used for communicating with the client

Server Client

Requesting connection…

 It's inconvenient to need two different computers to write
network code

 For testing purposes, you can often use a single computer as both
the server and the client

 To do so, you need to connect to yourself
 What's your IP address?
 Well, it might always be changing
 To make things simpler, there's a loopback IP address that always

refers to the computer you're currently on: 127.0.0.1
 The IPv6 loopback address is ::1 (where :: is notation that

means "fill in with appropriate numbers of zeroes")

 Exam 2 on Monday

 Work on Project 3
 Project 3 is now due on April 3

 Review everything after Exam 1
 Exam 2 is Monday, March 30

	COMP 2000
	Last time
	Questions?
	Project 3
	Review
	JOptionPane
	JOptionPane
	showMessageDialog() example
	Adding a title
	Different icons
	showConfirmDialog() example
	showOptionDialog() example
	showInputDialog() example
	JFrame
	Creating a JFrame
	setDefaultCloseOperation()
	Recap
	Widgets
	JButton
	Adding a JButton to a JFrame
	Displaying an icon on a JButton
	JLabel
	JTextField
	JTextArea
	BorderLayout
	GridLayout
	Action Listeners
	Making buttons do things
	ActionListener interface
	Anonymous inner classes
	Adding an action listener
	Java 8 style
	More on Java 8 style
	Recursion
	What is recursion?
	Useful Recursion
	Approach for Problems
	Code for Factorial
	Recursive style
	Call stack
	Example with Factorial
	Exponentiation
	Code for exponentiation
	Extra information
	Summing an array
	Code for summing an array
	Reversing a String
	Code for reversing a String
	Using the stack to go in reverse
	Printing a String in reverse
	Code for printing a String in reverse
	Reversing a String (the remix)
	Remixed code for reversing a String
	Merge Sort
	Merge Sort algorithm (recursive)
	Merge Sort code
	Merging (the hard part)
	Merge code
	Merging
	Merge code (alternative)
	N-Queens
	Problem solving approach
	N-Queens algorithm (recursive)
	Files
	Text files
	Reading
	Scanner methods
	Writing
	Exceptions
	Writing example
	Shut 'em down!
	Full example
	Why use binary files?
	Most files are binary files
	Reading binary files
	Example summing double values
	Error handling
	Closing the file
	Writing binary files
	Example writing double values
	Putting the I/O together
	Serialization
	Serializable interface
	Example Serializable class
	Writing using serialization
	Example of writing
	Reading using serialization
	Example of reading
	Networking
	What is the Internet?
	Packet switched
	IP addresses
	IPv4
	IPv6
	OSI 7 layer model
	Physical layer
	Data link layer
	Network layer
	Transport layer
	Session layer
	Presentation layer
	Application layer
	Mnemonics
	TCP/IP
	TCP/IP
	Common port numbers
	Clients vs. servers
	Listening server
	Loopback IP address
	Upcoming
	Next time…
	Reminders

